Close
  Indian J Med Microbiol
 

Figure 3: Influence of capsaicin on the cognitive processing and reward circuits of salt taste. (a and b) Grand averaged gustatory event-related potential waveforms computed across experimental conditions ([a] control vs. capsaicin, [b] 150 mM NaCl vs. 200 mM NaCl) and subjects at electrodes Cz, Fz, and Fpz. (c) Bar graphs show the peak amplitudes of the N1 component (left) and the P2 component (right) from the respective electrodes in each group. All the components showed enhanced amplitudes for high intensity (200 mM NaCl) compared to low intensity (150 mM) stimulation. This dose-response effect for increased taste intensity was diminished when capsaicin was added to the low intensity stimulus. *P < 0.05, **P < 0.01, 200 mM NaCl or 150 mM plus capsaicin groups vs. 150 mM group

Figure 3: Influence of capsaicin on the cognitive processing and reward circuits of salt taste. (a and b) Grand averaged gustatory event-related potential waveforms computed across experimental conditions ([a] control vs. capsaicin, [b] 150 mM NaCl vs. 200 mM NaCl) and subjects at electrodes Cz, Fz, and Fpz. (c) Bar graphs show the peak amplitudes of the N1 component (left) and the P2 component (right) from the respective electrodes in each group. All the components showed enhanced amplitudes for high intensity (200 mM NaCl) compared to low intensity (150 mM) stimulation. This dose-response effect for increased taste intensity was diminished when capsaicin was added to the low intensity stimulus. *<i>P</i> < 0.05, **<i>P</i> < 0.01, 200 mM NaCl or 150 mM plus capsaicin groups vs. 150 mM group